4.8 Article

The Li ion transport behavior in the defect graphene composite Li3N SEI: a first-principle calculation

期刊

MATERIALS TODAY CHEMISTRY
卷 21, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2021.100510

关键词

Heterostructure; Interface collaboration; Adsorption and diffusion; Density functional theory calculation

资金

  1. National Natural Science Foundation of China [51702170, 61765012]
  2. Natural Science Foundation of Inner Mongolia Autonomous Region [2020MS05036]

向作者/读者索取更多资源

The study demonstrated that modifying double-vacancy defect graphene can enhance the stability of the heterostructure and achieve the highest adhesion work. Modifying defective graphene can increase the adsorption energy of lithium atoms on the surface and interface, thereby inhibiting dendritic growth.
An artificial solid electrolyte interface (SEI) of a graphene composite lithium salt can inhibit the growth of dendrites by driving the lithium deposition behavior on the surface of the lithium metal anode. The first principle method was used to calculate the graphene/lithium nitride SEI, including the structural form and stability of intrinsic (G-Li3N), single-vacancy defect (SVG-Li3N), and double-vacancy defect (DVGLi(3)N) graphene heterostructure. The adsorption and migration behavior of lithium ions on the heterostructure surface and the interface were also calculated. This study showed that the modification of double-vacancy defect graphene improved the stability of the heterostructure, and the adhesion work of the composite SEI is the highest. The modification of defective graphene increases the adsorption energy of lithium atoms on the surface and interface of the heterostructure: the strongest adsorption of Li atoms on the single-vacancy defect region of the heterostructure, the opposition migration pathway of Li atoms on the surface and interface of the DVG-Li3N heterostructure, and the decrease diffusion energy of Li atoms on the surface and interface of the DVG-Li3N heterostructure. A composite layered SEI of graphene and Li3N was constructed to inhibit dendritic growth by adjusting the deposition behavior of lithium atoms. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据