4.8 Article

Paramagnetic surface active ionic liquids: synthesis, properties, and applications

期刊

MATERIALS TODAY CHEMISTRY
卷 21, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2021.100522

关键词

Micellar catalysis; Drug delivery; Aggregation behavior; MRI contrasting agent; DNA compatible

资金

  1. Department of Science & Technology (DST), India [EMR/2016/004747]

向作者/读者索取更多资源

PMSAILs classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. These paramagnetic ionic liquids exhibit excellent surface activity and magnetic properties, self-assembling into various nano-aggregates and providing stimuli responsive properties for targeted applications. A new emerging trend in PMSAIL research is hybridization with flexible materials, expanding their potential applications in various fields.
Paramagnetic surface active ionic liquids (PMSAILs) classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. Paramagnetic ionic liquids had long-chain either in cations or anions and showed excellent surface activity and magnetic properties without any need for the magnetic nanoparticles. These PMSAILs have inherent unique ionic liquid properties and self-assembled into various nano-aggregates such as micelles, vesicles, rod-like micelles, and etc., by modification in the structure of cations or anions. PMSAILs provide stimuli responsive properties, which is one of the essential aspects of targeted applications. The appropriate functional tunability of anions and cations in PMSAILs leads to various multifaceted chemical and biological applications. A new emerging trend in PMSAIL research is hybridization with flexible materials. This review will mainly deal with the synthesis, characterization, and brief history of PMSAILs and their potential advantages in the various applications in micellar catalysis, purification and separation of biomolecules, compaction and decompaction of DNA, drug delivery, and other biomedical applications. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据