4.8 Article

Novel long-chain aliphatic polyamide/surface-modified silicon dioxide nanocomposites: in-situ polymerization and properties

期刊

MATERIALS TODAY CHEMISTRY
卷 20, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2021.100450

关键词

Long-chain aliphatic polyamide; Surface modification; Silicon dioxide

资金

  1. Academy of Finland [327248, 327865]
  2. Academy of Finland (AKA) [327248, 327865, 327865, 327248] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

A new kind of long-chain aliphatic polyamide (PA1218) was successfully developed through polycondensation and improved using modified silicon dioxide (SSD); FT-IR and TGA confirmed successful nanoparticle surface modification, leading to significantly enhanced mechanical properties in the nanocomposites; All samples demonstrated a water uptake capacity of less than 0.6%, making them suitable for specific engineering applications.
A new kind of long-chain aliphatic polyamide (PA1218) with a relatively low melting point, high molecular weight, and stable mechanical properties at humid conditions was successfully developed via a polycondensation reaction between 1,18-octadecanedioic acid and 1,12-diaminodecane. Additionally, oleic acid-surfaced modified silicon dioxide (SSD) was prepared and employed to improve the properties of PA1218 through in-situ polymerization. FT-IR spectra and TGA thermograms confirmed the successful surface modification of nanoparticles, and consequently, 5% substitution of surface hydroxyl groups of SiO2 nanoparticles with oleic acid molecules. Moreover, the thermomechanical and rheology tests revealed a significant improvement in nanocomposites' properties compared to the pure PA1218; for instance, the tensile strength and storage modulus were increased by 22% and 40%, respectively in the sample containing 3% SSD nanoparticles. This improvement, along with SEM images, confirmed the uniform dispersion of SSD nanoparticles through the employed in-situ polymerization and excellent compatibility between inorganic and organic phases, which was achieved via surface modification. Finally, all the samples demonstrated a water uptake capacity of less than 0.6% attributed to the high methylene/amide ratio in their backbones, causing these newly developed nanocomposites to be notable candidates for specific engineering applications. (C) 2021 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据