4.5 Article

Developing Enhanced TSO-DSO Information and Data Exchange Based on a Novel Use Case Methodology

期刊

FRONTIERS IN ENERGY RESEARCH
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2021.670573

关键词

balancing market; transmission system operators; distribution system operators; use case; renewable energy sources; TSO-DSO coordination; information and data exchange

资金

  1. European Union [774500]
  2. H2020 Societal Challenges Programme [774500] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

This study proposes a novel business use case (BUC) methodology for utilizing distributed generation connected resources for balancing purposes in a market environment. By considering different scenarios, the importance of the proposed method in achieving overall system balancing is validated.
The growing penetration of renewable energy sources (RES) in the electrical power sector has increased the amount of distributed generation (DG) units connected at the distribution system level. In this context, new balancing challenges have arisen, creating the need for a novel use case methodology to enable an active role at the distribution system level such that transmission system operators (TSOs) can coordinate with distribution system operators (DSOs) with regard to connected resources for balancing purposes. In this study, the exploitation of the DSO-connected resources for balancing purposes in a market environment is proposed and evaluated via a novel business use case (BUC) methodology based on the categorization of IEC 62913-1. More specifically, in order to address different balancing market situations, two scenarios are considered with regard to the BUC. The first one represents the data exchange between the TSO, the DSO, and the balancing service provider (BSP). The second one represents an alternative scenario where data are exchanged directly between the TSO and the DSO, where the DSO also takes on the role of the BSP. The proposed BUC was also developed in order to validate the required data modeling and exchange mechanisms between DSOs and TSOs in order to exploit DSO-connected resources for overall system balancing purposes across different time scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据