4.5 Review

Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality

期刊

MEMBRANES
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/membranes11080616

关键词

brackish water reverse osmosis (BWRO) desalination; capital cost of BWRO; operating cost of BWRO; impacts of feedwater quality on cost; impacts of capacity on cost

资金

  1. Emergent Technologies Institute, U.A. Whitaker College of Engineering, Florida Gulf Coast University

向作者/读者索取更多资源

Brackish water desalination using the reverse osmosis process has been widely adopted globally, with a range of capital costs and operating costs depending on capacity and water quality. The trend shows that as plant capacity increases, operating costs decrease, but there is variability based on pre- and post-treatment complexity. The presence of high salinity feedwater can lead to increased costs and energy consumption, which can be mitigated with energy recovery systems.
Brackish water desalination, using the reverse osmosis (BWRO) process, has become common in global regions, where vast reserves of brackish groundwater are found (e.g., the United States, North Africa). A literature survey and detailed analyses of several BWRO facilities in Florida have revealed some interesting and valuable information on the costs and energy use. Depending on the capacity, water quality, and additional scope items, the capital cost (CAPEX) ranges from USD 500 to USD 2947/m(3) of the capacity (USD 690-USD 4067/m(3) corrected for inflation to 2020). The highest number was associated with the City of Cape Coral North Plant, Florida, which had an expanded project scope. The general range of the operating cost (OPEX) is USD 0.39 to USD 0.66/m(3) (cannot be corrected for inflation), for a range of capacities from 10,000 to 70,000 m(3)/d. The feed-water quality, in the range of 2000 to 6000 mg/L of the total dissolved solids, does not significantly impact the OPEX. There is a significant scaling trend, with OPEX cost reducing as plant capacity increases, but there is considerable scatter based on the pre- and post-treatment complexity. Many BWRO facilities operate with long-term increases in the salinity of the feedwater (groundwater), caused by pumping-induced vertical and horizontal migration of the higher salinity water. Any cost and energy increase that is caused by the higher feed water salinity, can be significantly mitigated by using energy recovery, which is not commonly used in BWRO operations. OPEX in BWRO systems is likely to remain relatively constant, based on the limitation on the plant capacity, caused by the brackish water availability at a given site. Seawater reverse osmosis facilities, with a very large capacity, have a lower OPEX compared to the upper range of BWRO, because of capacity scaling, special electrical energy deals, and process design certainty.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据