4.5 Article

Distinct Opsin 3 (Opn3) Expression in the Developing Nervous SystemduringMammalian Embryogenesis

期刊

ENEURO
卷 8, 期 5, 页码 -

出版社

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0141-21.2021

关键词

brain; development; encephalopsin; nervous system; Opn3; OPT

资金

  1. Swedish Research Council [2017-01430, 2017-01307]
  2. Insamlingsstiftelsen, Medical Faculty at Umea University
  3. Kempestiftelserna Grant [SMK-1763]
  4. National Institutes of Health [R01EY027077, R01EY027711, R01EY032029, T32GM063483]
  5. Insamlingsstiftelsen, Medical Faculty at Umea
  6. Swedish Research Council [2017-01430, 2017-01307] Funding Source: Swedish Research Council
  7. Formas [2017-01307] Funding Source: Formas

向作者/读者索取更多资源

This study utilized an Opn3-eGFP reporter mouse line to track Opn3 expression patterns during embryonic and early postnatal stages, identifying over twenty neural structures not previously reported. Opn3 expression was detected widely and prominently at early embryonic stages, suggesting important functional roles in developing brain and spinal cord.
Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据