4.6 Article

Compliant Fins for Locomotion in Granular Media

期刊

IEEE ROBOTICS AND AUTOMATION LETTERS
卷 6, 期 3, 页码 5984-5991

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2021.3084877

关键词

Force; Robots; Media; Animals; Mathematical model; Propulsion; Glass; Soft robot materials and design; modeling; control; and learning for soft robots; biologically-inspired robots

类别

资金

  1. Nation Science Foundation (NSF) Award [CMMI-1841574]

向作者/读者索取更多资源

This research presents a novel approach to optimize the gait design and propulsion efficiency of robots using granular Resistive Force Theory and compliance. It establishes the foundation for plate modeling and propulsion mechanism design, and conducts experimental verification in dynamic simulation.
In this letter, we present an approach to study the behavior of compliant plates in granular media and optimize the performance of a robot that utilizes this technique for mobility. From previous work and fundamental tests on thin plate force generation inside granular media, we introduce an origami-inspired mechanism with non-linear compliance in the joints that can be used in granular propulsion. This concept utilizes one-sided joint limits to create an asymmetric gait cycle that avoids more complicated alternatives often found in other swimming/digging robots. To analyze its locomotion as well as its shape and propulsive force, we utilize granular Resistive Force Theory (RFT) as a starting point. Adding compliance to this theory enables us to predict the time-based evolution of compliant plates when they are dragged and rotated. It also permits more rational design of swimming robots where fin design variables may be optimized against the characteristics of the granular medium. This is done using a Python-based dynamic simulation library to model the deformation of the plates and optimize aspects of the robot's gait. Finally, we prototype and test robot with a gait optimized using the modelling techniques mentioned above.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据