4.7 Article

Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells

期刊

SURFACES AND INTERFACES
卷 25, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.surfin.2021.101299

关键词

ZrTiO2; Hydrothermal; electron transport layer (ETL); Perovskite solar cell (PSC)

资金

  1. Higher Education Commission (HEC) of Pakistan [9371/Punjab/NRPU/RD/HEC/2017]

向作者/读者索取更多资源

The use of zirconium-doped TiO2 nanoparticles as an ETL in PSC significantly improves the power conversion efficiency. Additionally, the newly synthesized Zr-TiO2 nanoparticles also show good performance in photocatalytic activity.
Organic-inorganic perovskite solar cells (PSC) are gaining widespread recognition due to their higher performances and low-cost relative to other photovoltaic technologies. However, the efficient charge collection and rapid electron transportation are the key parameters desirable for the development of optimized electron transport layer (ETL) in PSC. In this research work, hydrothermally synthesized zirconium-doped titania nanoparticles (Zr-TiO2) were introduced as an ETL in a n-i-p planar configuration. The Zr-doped TiO2 nanoparticles were characterized for various morphological, structural and optical studies by using SEM, EDX, XRD, Raman, PL and UV-Vis spectroscopy techniques. The photocatalytic activity of newly synthesized Zr-TiO2 nanoparticles was investigated by CV, EIS and tafel measurements. The current-voltage characteristics (J-V) of the newly fabricated PSC devices were investigated under 1 sun condition. The superior power conversion efficiency (PCE) of 12.35 % was observed with 0.2 M Zr-doped TiO2 based ETL in PSC. The remarkable PCE in 0.2 M Zr-doped TiO2 nanoparticles-based PSC is attributed to significant enhancement in charge carrier extraction and due to less recombination reactions at interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据