4.6 Review

The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants

期刊

BIOLOGY-BASEL
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/biology10060520

关键词

plant growth-promoting bacteria; drought; antioxidant enzymes; chlorophylls; phenols

类别

资金

  1. Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program

向作者/读者索取更多资源

Drought is a detrimental factor in arid and semiarid regions, causing a significant decrease in plant growth and yield. Plant growth-promoting bacteria play a pivotal role in mitigating the negative effects of drought by enhancing plant growth and improving agricultural sustainability. They do so by adjusting hormonal balance, maintaining nutrient status, and increasing antioxidant defense systems.
Simple Summary Among abiotic stress factors, drought is one of the most detrimental factors in arid and semiarid regions, causing a significant decrease in plant growth and yield in most species, including crops. Under drought conditions, morphological, physiological and biochemical characteristics such as plant height and enzymatic activities are negatively affected. This negative effect may be alleviated with the aid of plant growth-promoting bacteria. Application of plant growth-promoting bacteria such as Paenibacillus, Azospirillum, Rhizobium, Bacillus, Azotobacter, Klebsiella, Pseudomonas and Serratia can enhance hormonal balance, maintain nutrient status and improve plant growth characters as well as increase yield. This review discusses the pivotal role of plant growth-promoting bacteria in mitigating drought stress by improving plant growth characters and yield. Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据