4.8 Article

Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst

期刊

GREEN CHEMISTRY
卷 18, 期 12, 页码 3628-3639

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6gc00572a

关键词

-

资金

  1. Natural Science Foundation of China (NSFC) [51472005, 51172086, 51272081, 21473066, 21103060, 21203029]
  2. Natural Science Foundation of Anhui Province [1408085QB38, 1608085QB37]
  3. High Education Revitalization Plan of Anhui province
  4. Foundations of Natural Science of Anhui Education Committee [KJ2014A230]

向作者/读者索取更多资源

In this study, a nanoparticle structure of CdS with cubic phase (CdS-G) was prepared by a facile solid-state reaction at room temperature for the first time. CdS-G can be used as a highly active photocatalyst for selective oxidation of p-methoxybenzyl alcohol (pMBA) to p-methoxybenzaldehyde (pMBAD) and reduction of nitrobenzene (NB) to aniline (AL) in a coupled reaction system under green mild reaction conditions through visible light irradiation. Compared with the counterparts prepared by the conventional precipitation method (CdS-P) and hydrothermal method (CdS-H), the photocatalytic performance of CdS-G is greatly improved owing to the unique features of the nanostructure, the high surface area, pore volume, visible light absorption and photoelectric properties. The yield of pMBAD (AL) over CdS-G is about 1.6 (5.2) and 1.9 (20.8) times higher than that over CdS-P and CdS-H, respectively. The CdS-G sample exhibits excellent selectivity and stability because its valence band (VB) and conduction band (CB) positions matched well with the redox potentials of pMBA/pMBAD and NB/AL. Furthermore, the photogenerated holes and electrons can be efficiently and directly reacted with pMBA and NB, respectively. The photocatalytic selective oxidation and reduction reaction is a synergistic reaction via producing and consuming protons. The photogenerated holes and electrons could be utilized thoroughly to produce pMBAD and AL, respectively. The molar ratio of pMBA and NB was 3 : 1, and the yield of pMBAD and AL could be successfully achieved at a theoretical ratio of 1 : 1. This work highlights the promising scope for selective organic synthesis in one reaction system under mild conditions using photogenerated electrons and holes directly and simultaneously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据