4.7 Article

Tumor-derived NKG2D ligand sMIC reprograms NK cells to an inflammatory phenotype through CBM signalosome activation

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02440-3

关键词

-

资金

  1. NIH/NCI [1R01CA208246, 1R01CA204021, 1R01CA212409]

向作者/读者索取更多资源

Research shows that tumor-derived NKG2D ligand soluble MIC can reprogram NK cells and provides a rationale for targeting sMIC to enhance the efficacy of current NK cell-based cancer immunotherapies.
Natural Killer (NK) cell dysfunction is associated with poorer clinical outcome in cancer patients. What regulates NK cell dysfunction in tumor microenvironment is not well understood. Here, we demonstrate that the human tumor-derived NKG2D ligand soluble MIC (sMIC) reprograms NK cell to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential. Antibody clearing sMIC restores NK cell to a normal cytotoxic effector functional state. We discovered that sMIC selectively activates the CBM-signalosome inflammatory pathways in NK cells. Conversely, tumor cell membrane-bound MIC (mMIC) stimulates NK cell cytotoxicity through activating PLC2 gamma 2/SLP-76/Vav1 pathway. Ultimately, antibody targeting sMIC effectuated the in vivo anti-tumor effect of adoptively transferred NK cells. Our findings uncover an unrecognized mechanism that could instruct NK cell to a dysfunctional state in response to cues in the tumor microenvironment. Our findings provide a rationale for co-targeting sMIC to enhance the efficacy of the ongoing NK cell-based cancer immunotherapy. Dhar et al used primary human and mouse natural killer (NK) cells to demonstrate that tumor-derived NKG2D ligand soluble MIC (sMIC) can reprogram the NK cells to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential. Their study provides a rationale for co-targeting sMIC in order to enhance current NK cell-based cancer immunotherapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据