4.7 Article

Guard cells control hypocotyl elongation through HXK1, HY5, and PIF4

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02283-y

关键词

-

向作者/读者索取更多资源

Kelly et al. demonstrate that Arabidopsis hexokinase1 (HXK1) expressed in guard-cells promotes hypocotyl elongation through increasing PIF4 activity and auxin level, while competing with HY5. This study reveals the antagonistic coordination of light and sucrose in achieving sufficient height for photosynthetic sugar production. Guard cells play a crucial role in coordinating hypocotyl elongation, with sugar and HXK1 exhibiting opposing effects to light on hypocotyl elongation, converging at PIF4.
Kelly et al. show that Arabidopsis hexokinase1 (HXK1) expressed in guard-cells is sufficient to drive hypocotyl elongation through increasing the activity of PIF4 and auxin level, and competing with the effects of HY5. This study provides insights into how light and sucrose antagonistically coordinate the effort to achieve the height necessary for efficient photosynthetic, autotrophic sugar production. The hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells' HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据