4.7 Article

Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02532-0

关键词

-

资金

  1. Russian Foundation for Basic research [20-34-70024]
  2. National Natural Science Foundation of China [21877106, 21807098]
  3. Pioneer Hundred Talents Program (CAS)
  4. Ministry of Science and Higher Education of the Russian Federation [075-00337-20-03, FSMG-2020-0003]

向作者/读者索取更多资源

Lushpa et al report the structure and dynamics of the TLR1 toll-interleukin like (TIR) cytoplasmic domain in both crystal and solution. They demonstrate that the TLR1 TIR domain is capable of specific binding of Zn with nanomolar affinity, which appears to be critical for receptor activation, and provide potential structures TLR1-TIR/Zn complex based on in silico data.
Toll-like receptors (TLRs) play an important role in the innate immune response. While a lot is known about the structures of their extracellular parts, many questions are still left unanswered, when the structural basis of TLR activation is analyzed for the TLR intracellular domains. Here we report the structure and dynamics of TLR1 toll-interleukin like (TIR) cytoplasmic domain in crystal and in solution. We found that the TLR1-TIR domain is capable of specific binding of Zn with nanomolar affinity. Interactions with Zn are mediated by cysteine residues 667 and 686 and C667 is essential for the Zn binding. Potential structures of the TLR1-TIR/Zn complex were predicted in silico. Using the functional assays for the heterodimeric TLR1/2 receptor, we found that both Zn addition and Zn depletion affect the activity of TLR1, and C667A mutation disrupts the receptor activity. Analysis of C667 position in the TLR1 structure and possible effects of C667A mutation, suggests that zinc-binding ability of TLR1-TIR domain is critical for the receptor activation. Lushpa et al report the structure and dynamics of the TLR1 toll-interleukin like (TIR) cytoplasmic domain in both crystal and solution. They demonstrate that the TLR1 TIR domain is capable of specific binding of Zn with nanomolar affinity, which appears to be critical for receptor activation, and provide potential structures TLR1-TIR/Zn complex based on in silico data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据