4.7 Article

Drug transport kinetics of intravascular triggered drug delivery systems

期刊

COMMUNICATIONS BIOLOGY
卷 4, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s42003-021-02428-z

关键词

-

资金

  1. NIH [R01CA181664]
  2. NIH from the Extramural Research Facilities Program of the National Center for Research Resources (MUSC) [C06 RR018823]

向作者/读者索取更多资源

The study developed a computational model to simulate Intravascular Triggered Drug Delivery Systems (IV-DDS) for local drug delivery and validated the model through experiments. The model explained delivery kinetics, identified optimal delivery parameters, and highlighted key factors affecting drug delivery. It also demonstrated the importance of fast drug release and rapid tissue uptake for efficient delivery.
Intravascular triggered drug delivery systems (IV-DDS) for local drug delivery include various stimuli-responsive nanoparticles that release the associated agent in response to internal (e.g., pH, enzymes) or external stimuli (e.g., temperature, light, ultrasound, electromagnetic fields, X-rays). We developed a computational model to simulate IV-DDS drug delivery, for which we quantified all model parameters in vivo in rodent tumors. The model was validated via quantitative intravital microscopy studies with unencapsulated fluorescent dye, and with two formulations of temperature-sensitive liposomes (slow, and fast release) encapsulating a fluorescent dye as example IV-DDS. Tumor intra- and extravascular dye concentration dynamics were extracted from the intravital microscopy data by quantitative image processing, and were compared to computer model results. Via this computer model we explain IV-DDS delivery kinetics and identify parameters of IV-DDS, of drug, and of target tissue for optimal delivery. Two parameter ratios were identified that exclusively dictate how much drug can be delivered with IV-DDS, indicating the importance of IV-DDS with fast drug release (similar to sec) and choice of a drug with rapid tissue uptake (i.e., high first-pass extraction fraction). The computational model thus enables engineering of improved future IV-DDS based on tissue parameters that can be quantified by imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据