4.7 Article

Rational Design of Photoelectrodes for the Fully Integrated Polymer Electrode Membrane-Photoelectrochemical Water-Splitting System: A Case Study of Bismuth Vanadate

期刊

ACS APPLIED ENERGY MATERIALS
卷 4, 期 9, 页码 9600-9610

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.1c01752

关键词

photoelectrochemical water-splitting; porous substrate; BiVO4 photoanodes; SILAR method; membrane photoelectrode assembly; Aquivion

资金

  1. Dutch Research Council (N.W.O.)
  2. Toyota Motor Europe

向作者/读者索取更多资源

This study addresses the challenges of depositing narrow band gap metal-oxides on porous substrates as suitable photoelectrodes for PEM-PEC configuration, achieving a high photocurrent density with W-doped BiVO4 photoanode. The successful integration of BiVO4 into PEM-PEC reactor demonstrates solar hydrogen production from ambient air, showing promise for low-cost and large-scale solar hydrogen production.
Photoelectrochemical (PEC) reactors based on polymer electrolyte membrane (PEM) electrolyzers are an attractive alternative to improve scalability compared to conventional monolithic devices. To introduce narrow band gap photoabsorbers such as BiVO4 in PEM-PEC system requires cost-effective and scalable deposition techniques beyond those previously demonstrated on monolithic FTO-coated glass substrates, followed by the preparation of membrane electrode assemblies. Herein, we address the significant challenges in coating narrow band gap metal-oxides on porous substrates as suitable photoelectrodes for the PEM-PEC configuration. In particular, we demonstrate the deposition and integration of W-doped BiVO4 on porous conductive substrates by a simple, cost-effective, and scalable deposition based on the SILAR (successive ionic layer adsorption and reaction) technique. The resultant W-doped BiVO4 photoanode exhibits a photocurrent density of 2.1 mA.cm(-2), @ 1.23 V vs RHE, the highest reported so far for the BiVO4 on any porous substrates. Furthermore, we integrated the BiVO4 on the PEM-PEC reactor to demonstrate the solar hydrogen production from ambient air with humidity as the only water source, retaining 1.55 mA.cm(-2), @ 1.23 V vs RHE. The concept provides insights into the features necessary for the successful development of materials suitable for the PEM-PEC tandem configuration reactors and the gas-phase operation of the reactor, which is a promising approach for low-cost, large-scale solar hydrogen production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据