4.6 Article

Investigating the potential of a global precipitation forecast to inform landslide prediction

期刊

WEATHER AND CLIMATE EXTREMES
卷 33, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.wace.2021.100364

关键词

Remotely sensed precipitation; Extreme precipitation; Global Forecast; GEOS; Landslide Prediction; IMERG; LHASA

资金

  1. NASA Disasters Program [18-DISASTER18-0022]

向作者/读者索取更多资源

This study compares the performance of NASA's GEOS global precipitation forecast with satellite precipitation estimates, focusing on extreme precipitation events over the contiguous United States. Findings show that seasonality influences the performance of both satellite and model-based precipitation products. The research aims to assess the viability of using a global forecast for landslide predictions and understand the variability between these products.
Extreme rainfall events within landslide-prone areas can be catastrophic, resulting in loss of property, infrastructure, and life. A global Landslide Hazard Assessment for Situational Awareness (LHASA) model provides routine near-real time estimates of landslide hazard using Integrated Multi-Satellite Precipitation Retrievals for the Global Precipitation Mission (IMERG). However, it does not provide information on potential landslide hazard in the future. Forecasting potential landslide events at a global scale presents an area of open research. This study compares a global precipitation forecast provided by NASA's Goddard Earth Observing System (GEOS) with near-real time satellite precipitation estimates. The Multi-Radar Multi-Sensor gauge corrected (MRMS-GC) reference is used to assess the performance of both satellite and model-based precipitation products over the contiguous United States (CONUS). The forecast lead time of 24hrs is considered, with a focus on extreme precipitation events. The performance of IMERG and GEOS-Forecast products is assessed in terms of the probability of detection, success ratio, critical success index and hit bias as well as continuous statistics. The results show that seasonality influences the performance of both satellite and model-based precipitation products. Comparison of IMERG and GEOS-Forecast globally as well as in several event case studies (Colombia, southeast Asia, and Tajikistan) reveals that GEOS-Forecast detects extreme rainfall more frequently relative to IMERG for these specific analyses. For recent landslide points across the globe, the 24hr accumulated precipitation forecast >100 ram corresponds well with near-real time daily accumulated IMERG precipitation estimates. GEOS-Forecast and IMERG precipitation match more closely for tropical cyclones than for other types of storms. The main intention of this study is to assess the viability of using a global forecast for landslide predictions and understand the extent of the variability between these products to inform where we would expect the landslide modeling results to most prominently diverge. Results of this study will be used to inform how forecasted precipitation estimates can be incorporated into the LHASA model to provide the first global predictive view of landslide hazards.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据