4.7 Review

Metabolic Phenotypes and Step by Step Evolution of Type 2 Diabetes: A New Paradigm

期刊

BIOMEDICINES
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/biomedicines9070800

关键词

hyperinsulinaemia; insulin resistance; osteocalcin; beta-hydroxybutyrate; phenotype; stages; serotonin; glucagon-like peptide-1; glucagon; type 2 diabetes; hyperglycaemia

向作者/读者索取更多资源

Basal insulin secretion mechanisms are poorly understood in non-hyperinsulinaemia healthy individuals, but elucidating these mechanisms is crucial for investigating pathologies such as T2DM, CVD, certain cancers, and dementias.
Unlike bolus insulin secretion mechanisms, basal insulin secretion is poorly understood. It is essential to elucidate these mechanisms in non-hyperinsulinaemia healthy persons. This establishes a baseline for investigation into pathologies where these processes are dysregulated, such as in type 2 diabetes (T2DM), cardiovascular disease (CVD), certain cancers and dementias. Chronic hyperinsulinaemia enforces glucose fueling, depleting the NAD+ dependent antioxidant activity that increases mitochondrial reactive oxygen species (mtROS). Consequently, beta-cell mitochondria increase uncoupling protein expression, which decreases the mitochondrial ATP surge generation capacity, impairing bolus mediated insulin exocytosis. Excessive ROS increases the Drp1:Mfn2 ratio, increasing mitochondrial fission, which increases mtROS; endoplasmic reticulum-stress and impaired calcium homeostasis ensues. Healthy individuals in habitual ketosis have significantly lower glucagon and insulin levels than T2DM individuals. As beta-hydroxybutyrate rises, hepatic gluconeogenesis and glycogenolysis supply extra-hepatic glucose needs, and osteocalcin synthesis/release increases. We propose insulin's primary role is regulating beta-hydroxybutyrate synthesis, while the role of bone regulates glucose uptake sensitivity via osteocalcin. Osteocalcin regulates the alpha-cell glucagon secretory profile via glucagon-like peptide-1 and serotonin, and beta-hydroxybutyrate synthesis via regulating basal insulin levels. Establishing metabolic phenotypes aids in resolving basal insulin secretion regulation, enabling elucidation of the pathological changes that occur and progress into chronic diseases associated with ageing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据