4.7 Article

Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell

期刊

MATERIALS TODAY ENERGY
卷 20, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2021.100647

关键词

Perovskite solar cell; Methyl ammonium and lead-free; Multijunction tandem solar cell

向作者/读者索取更多资源

This study quantifies the performance of CsSnxG1-xI3 perovskite, obtained by combining CsSnI3 and CsGeI3 perovskites, for standalone and integrated structures. Optimal design parameters were found to achieve high power conversion efficiencies, paving the way for the development of highly stable all-inorganic perovskite/Si tandem solar cells.
Finding a highly stable and appropriate perovskite solar cell with optimum design parameters is crucial for being included as the top cell in tandem structure, with Si as the bottom cell, to realize the power conversion efficiencies (PCEs) over the limits imposed by Shockley-Queisser theory. Here, we quantize the performance of methylammonium (MA) and lead (Pb)-free all-inorganic cesium tin-germanium triiodide (CsSnxG1-xI3) by combining CsSnI3 (E-g = 1.31 eV) and CsGeI3 (Eg = 1.63 eV) perovskites for standalone and integrated multijunction structure in tandem with Silicon solar cell. The maximum PCE of the standalone cell is shown to be about 16.5% and 13.6% for n-i-p and p-i-n structures, respectively, almost twice the present PCE value obtained in the experiment. Optimum perovskite absorber bandgap of 1.38 eV and electron affinity of 4eV with composition ratio of X = 0.25 (CsSn1-xGexI3) in both n-i-p and p-i-n structures are obtained. The optimum perovskite absorber thickness of 600 nm leads to the highest PCEs. The effect of doping concentration and defect density on absorber was also explored. Finally, four-terminal and six-terminal tandem solar cells are designed and optimized. With CsSn1-xGexI3 perovskite thickness of 385 nm and bandgap of 1.56 eV in the four-terminal, it demonstrates the high PCE of 26.9%. Interestingly, with FASnI(2)Br (Eg = 1.68 eV and thickness = 200 nm) and CsSn0.75Ge0.25I3 (Eg = 1.38 eV and thickness = 200 nm) as the absorber layer of the top cell and middle cell in the six-terminal PSC, respectively, the superior PCE of 27.8% is realized for MA and Pb-free six-terminal perovskite/Si tandem solar cell. This work provides a route toward the development of highly stable all-inorganic perovskite/Si tandem solar cells. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据