4.7 Article

A pH-Neutral Polyelectrolyte Hole Transport Layer for Improved Energy Band Structure at the Anode/PTB7 Junction and Improved Solar Cell Performance

期刊

SOLAR RRL
卷 5, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202100521

关键词

doping; hole transport layers; organic semiconductors; polyelectrolytes; solar cells

资金

  1. National Research Foundation of Korea [NRF-2017R1A2B2012971, NRF-2019K1A3A7A09101449, 2019R1A6A1A11044070, NRF-2020R1F1A1075539, NRF-2021R1C1C2011757]
  2. National Research Foundation of Korea [4120200213669] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

A study investigated the effects of a new pH-neutral polyelectrolyte on the interfacial properties and charge extraction efficiency of organic solar cells, showing that efficiency can be improved through optimized processing conditions.
In organic solar cells (OSCs), interfacial properties between the donor phase and hole transport layers (HTLs) are critical factors which govern charge extraction efficiency. Many ionic and polar materials are known to function as effective interfacial layers; however, an understanding of how ionic moieties affect the electronic band structure and characteristics of OSCs is lacking. Herein, a new, pH-neutral polyelectrolyte is introduced that resolves several problems which are encountered with the commonly used HTL, poly(3,4-ethylenedioxythiopene):polystyrenesulfonate (PEDOT:PSS). An effective p-type polyelectrolyte dopant is designed, comprising an anionically charged PSS backbone with easily reduced Cu2+ counterions (Cu:PSS), and interfacial properties for HTL/donor interfaces by photoelectron spectroscopy are analyzed. The effects of the polyelectrolyte on interfacial energy levels and charge extraction efficiency between the active layer and HTL are quantified. Using optimized processing conditions, the efficiency can be improved from 8.31% to 9.28% in conventional OSCs compared with a standard PEDOT:PSS HTL. The energy-level alignment at the HTLs/donor interface determined by UV photoelectron spectroscopy measurements reveals the origin of distinct differences in device performances. The reduced ionization potential (IP) and hole injections barrier (phi(h)) at the HTL/donor interface play a crucial role in efficient charge extraction in conventional OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据