4.8 Article

Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Physical

CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm-2 with InP Colloidal Quantum Dot Derived Catalysts

Ivan Grigioni et al.

Summary: Formate production through CO2 electroreduction can be achieved at a high activity level using a catalyst synthesized with InP quantum dots. Surface indium metal sites on the catalyst adsorb and reduce CO2 molecules, while sulfur sites cleave water and provide protons, enabling high formate productivity.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface

Zhengxiang Gu et al.

Summary: A rational strategy was demonstrated to achieve a high faradaic efficiency towards C2+ alcohols by constructing copper catalysts with stepped sites in a CO-rich environment. The defect-site-rich copper catalyst enabled the formation of C2+ alcohols with partial current densities of > 100 mA.cm(-2) and achieved a stable alcohol faradaic efficiency of around 60% during a continuous 30-hour operation.
Article Chemistry, Physical

Self-Cleaning CO2 Reduction Systems: Unsteady Electrochemical Forcing Enables Stability

Yi Xu et al.

Summary: The study introduces a self-cleaning CO2 reduction strategy to enhance the efficiency of electrochemical conversion of CO2 and prevent carbonate salt formation, demonstrating a significant extension of the cathode's lifespan.

ACS ENERGY LETTERS (2021)

Review Energy & Fuels

Designing anion exchange membranes for CO2 electrolysers

Danielle A. Salvatore et al.

Summary: New technologies are needed to efficiently convert carbon dioxide into fuels and chemicals at near-ambient temperatures and pressures. Anion exchange membranes in zero-gap reactors show promise for mediating the electrochemical CO2 reduction reaction, but challenges remain in tailoring these membranes to meet the requirements of CO2RR systems.

NATURE ENERGY (2021)

Article Chemistry, Physical

Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene

Adnan Ozden et al.

Summary: CO2 electroreduction is a promising method to convert waste emissions into chemicals, but the process suffers from CO2 loss to carbonate, consuming a large amount of energy input. By coupling a cascade SOEC-MEA approach, the energy efficiency can be improved, reducing energy intensity.
Article Multidisciplinary Sciences

CO2 electrolysis to multicarbon products in strong acid

Jianan Erick Huang et al.

Summary: Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. A study found that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. The research achieved a high CO2R efficiency on copper at pH <1 with a single-pass CO2 utilization of 77%.

SCIENCE (2021)

Article Chemistry, Multidisciplinary

Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks

Shariful Kibria Nabil et al.

Summary: Development of electrochemical pathways for converting CO2 into valuable products has been rapidly progressing in the past decade. A comparative life cycle assessment was conducted to evaluate one-step and two-step electrochemical conversion of CO2, revealing that the two-step electrosynthesis pathways are more compelling in terms of climate benefits. The carbon intensity of electrosynthesis products is primarily influenced by the significant energy requirements for conversion and product separation phases.

GREEN CHEMISTRY (2021)

Article Chemistry, Multidisciplinary

Suppressing the liquid product crossover in electrochemical CO2 reduction

Ning Wang et al.

Summary: The crossover of liquid products in electrochemical CO2 reduction (CO2R) has been a neglected issue, but it hinders the application and efficiency of the process. Promising methods to suppress liquid product crossover include the use of bipolar membranes, solid-state electrolytes, and cation-exchange membranes, with remaining challenges to overcome in achieving the goal of producing concentrated liquid products from CO2.

SMARTMAT (2021)

Article Chemistry, Multidisciplinary

Competition between CO2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions

Akansha Goyal et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Physical

Voltage Matters When Reducing CO2 in an Electrochemical Flow Cell

Danielle Salvatore et al.

ACS ENERGY LETTERS (2020)

Article Chemistry, Multidisciplinary

Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs

Ming Ma et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Binding Site Diversity Promotes CO2 Electroreduction to Ethanol

Yuguang C. Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Towards membrane-electrode assembly systems for CO2 reduction: a modeling study

Lien-Chun Weng et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Catholyte-Free Electrocatalytic CO2 Reduction to Formate

Wonhee Lee et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products

Joshua M. Spurgeon et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Engineering, Chemical

General Techno-Economic Analysis of CO2 Electrolysis Systems

Matthew Jouny et al.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2018)

Review Chemistry, Physical

What Should We Make with CO2 and How Can We Make It?

Oleksandr S. Bushuyev et al.

Article Green & Sustainable Science & Technology

Bipolar Membranes Inhibit Product Crossover in CO2 Electrolysis Cells

Yuguang C. Li et al.

ADVANCED SUSTAINABLE SYSTEMS (2018)

Review Thermodynamics

Challenges and opportunities in improving the production of bio-ethanol

Jan Baeyens et al.

PROGRESS IN ENERGY AND COMBUSTION SCIENCE (2015)

Article Chemistry, Physical

Screening iridium-based bimetallic alloys as catalysts for direct ethanol fuel cells

Julien Courtois et al.

APPLIED CATALYSIS A-GENERAL (2014)

Review Biotechnology & Applied Microbiology

Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities

Huei-Ru Molly Jhong et al.

CURRENT OPINION IN CHEMICAL ENGINEERING (2013)

Review Chemistry, Multidisciplinary

Ion exchange membranes for vanadium redox flow battery (VRB) applications

Xianfeng Li et al.

ENERGY & ENVIRONMENTAL SCIENCE (2011)

Article Chemistry, Physical

Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction

Devin T. Whipple et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2010)

Article Chemistry, Analytical

Parallel pathways of ethanol oxidation: The effect of ethanol concentration

GA Camara et al.

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2005)

Article Chemistry, Physical

Ethanol electrooxidation on a carbon-supported Pt catalyst: Reaction kinetics and product yields

H Wang et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2004)