4.4 Article

Miocene Phosphatization of Rocks From the Summit of Rio Grande Rise, Southwest Atlantic Ocean

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020PA004197

关键词

phosphatization; phosphorus; ferromanganese crusts; Miocene; Atlantic Ocean; Rio Grande Rise

资金

  1. CNPq [141918/2018-7]
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2018/051148]
  3. USGS Coastal and Marine Hazards and Resources Program, through the USGS Pacific Coastal and Marine Science Center
  4. FAPESP [2016/24946-9]

向作者/读者索取更多资源

Marine phosphorites at the summit of Rio Grande Rise in the Southwest Atlantic Ocean originated during the Miocene and occasionally during the Quaternary, mainly through the cementation of carbonate sediments. The intensity of phosphatization depended on factors like porosity/permeability and abundance of fine calcite material, and was linked to a transition to a more dynamic circulation system in the South Atlantic Ocean. The cessation of phosphatization at RGR was due to a rapidly cooling and dry climate during the Miocene-Pliocene transition.
Marine phosphorites are an important part of the oceanic phosphorus cycle and are related to the effects of long-term global climate changes. We use petrography, mineralogy, rare earth elements contents, and Sr-87/Sr-86-determined carbonate fluorapatite (CFA) and calcite ages to investigate the paragenesis and history of phosphatization of carbonate sediments, limestones, ferromanganese crusts, and ironstones from the summit of Rio Grande Rise (RGR), Southwest Atlantic Ocean. Phosphatization of all the rock types occurred throughout the Miocene from 20.2 to 6.8 million years ago (Ma), and occasionally during the Quaternary, mainly through the cementation of carbonate sediments by cryptocrystalline CFA, likely involving the dissolution of the smaller size fraction of foraminifera-nannofossil ooze. Porosity/permeability and abundance of fine calcite material were important factors determining the intensity of phosphatization of the various rock types. Phosphatization was initiated during a transition to a more dynamic circulation system in the South Atlantic Ocean, which remobilized phosphorus from deeper waters and increased primary productivity that culminated with the middle-Miocene Climatic Optimum between similar to 17 and 14.8 Ma. The relatively shallow-water depth of RGR summit during the Miocene provided proximity to the oxygen minimum zone, a reservoir for reactive phosphorus, especially during periods of enhanced phosphorus cycling spurred by surface primary productivity. The cessation of phosphatization at RGR resulted from a rapidly cooling and dry climate that characterized the Miocene-Pliocene transition. Our results support previous observations that periods of broadly intensified ocean circulation and local hydrodynamic changes were the key paleoceanographic links to phosphorite formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据