4.6 Review

Non-Diffracting Light Wave: Fundamentals and Biomedical Applications

期刊

FRONTIERS IN PHYSICS
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2021.698343

关键词

non-diffracting; Bessel beam; Airy beam; lattice beam; two-photon microscopy; Raman microscopy

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [HKU 17205321, HKU 17200219, HKU 17209018, E-HKU701/17, HKU C7047-16G, CityU T42-103/16-N]
  2. National Natural Science Foundation of China (NSFC) [N_HKU712/16]
  3. Fudan University [JIF2641001]

向作者/读者索取更多资源

The propagation of light in a medium involves diffraction, dispersion, and scattering effects. Research on non-diffracting beams, especially in biomedical applications, can provide fast imaging and scattering-resilient imaging, which is particularly important for sparse sample structures.
The light propagation in the medium normally experiences diffraction, dispersion, and scattering. Studying the light propagation is a century-old problem as the photons may attenuate and wander. We start from the fundamental concepts of the non-diffracting beams, and examples of the non-diffracting beams include but are not limited to the Bessel beam, Airy beam, and Mathieu beam. Then, we discuss the biomedical applications of the non-diffracting beams, focusing on linear and nonlinear imaging, e.g., light-sheet fluorescence microscopy and two-photon fluorescence microscopy. The non-diffracting photons may provide scattering resilient imaging and fast speed in the volumetric two-photon fluorescence microscopy. The non-diffracting Bessel beam and the Airy beam have been successfully used in volumetric imaging applications with faster speed since a single 2D scan provides information in the whole volume that adopted 3D scan in traditional scanning microscopy. This is a significant advancement in imaging applications with sparse sample structures, especially in neuron imaging. Moreover, the fine axial resolution is enabled by the self-accelerating Airy beams combined with deep learning algorithms. These additional features to the existing microscopy directly realize a great advantage over the field, especially for recording the ultrafast neuronal activities, including the calcium voltage signal recording. Nonetheless, with the illumination of dual Bessel beams at non-identical orders, the transverse resolution can also be improved by the concept of image subtraction, which would provide clearer images in neuronal imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据