4.4 Article

LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans

期刊

GLYCOBIOLOGY
卷 26, 期 12, 页码 1284-1296

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cww075

关键词

dystroglycan; glycosaminoglycan; laminin binding; LARGE2; proteoglycan

资金

  1. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center [1U54NS053672]
  2. University of Georgia College of Pharmacy

向作者/读者索取更多资源

Both LARGE1 (formerly LARGE) and its paralog LARGE2 are bifunctional glycosyltransferases with xylosy- and glucuronyltransferase activities, and are capable of synthesizing polymers composed of a repeating disaccharide [-3Xyl alpha 1,3GlcA beta 1-]. Post-translational modification of the O-mannosyl glycan of a-dystroglycan (alpha-DG) with the polysaccharide is essential for it to act as a receptor for ligands in the extracellular matrix (ECM), and both LARGE paralogs contribute to the modification in vivo. LARGE1 and LARGE2 have different tissue distribution profiles and enzymatic properties; however, the functional difference of the homologs remains to be determined, and a-DG is the only known substrate for the modification by LARGE1 or LARGE2. Here we show that LARGE2 can modify proteoglycans (PGs) with the laminin-binding glycan. We found that overexpression of LARGE2, but not LARGE1, mediates the functional modification on the surface of DG(-/-), Pomt1(-/-) and Fktn(-/-) embryonic stem cells. We identified a heparan sulfate-PG glypican-4 as a substrate for the LARGE2-dependent modification by affinity purification and subsequent mass spectrometric analysis. Furthermore, we showed that LARGE2 could modify several additional PGs with the laminin-binding glycan, most likely within the glycosaminoglycan (GAG)-protein linkage region. Our results indicate that LARGE2 can modify PGs with the GAG-like polysaccharide composed of xylose and glucuronic acid to confer laminin binding. Thus, LARGE2 may play a differential role in stabilizing the basement membrane and modifying its functions by augmenting the interactions between laminin globular domain-containing ECM proteins and PGs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据