4.7 Article

Multi-model assessment of global hydropower and cooling water discharge potential under climate change

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.gloenvcha.2016.07.007

关键词

Water resources; Water temperature; Hydropower; Cooling water; Climate change; Global hydrological models

资金

  1. Niels Stensen Fellowship
  2. Veni-grant of NWO Earth and Life Sciences (ALW) [863.14.008]

向作者/读者索取更多资源

Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic pathway (SSP)1, SSP2, SSP4) and 41-51% (RCP8.5-SSP3, SSP5) of the world population by the 2080s. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据