4.6 Article

Entangled quantum cellular automata, physical complexity, and Goldilocks rules

期刊

QUANTUM SCIENCE AND TECHNOLOGY
卷 6, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2058-9565/ac1c41

关键词

quantum cellular automata; complexity; entanglement

资金

  1. NSF [OAC-1740130, CCF-1839232, PHY-1806372, PHY-1748958]
  2. Engineering and Physical Sciences Research Council [EP/P01058X/1]
  3. Italian PRIN 2017
  4. Horizon 2020 research and innovation programme [817482]
  5. Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF) [PHY-1125565]
  6. Gordon and Betty Moore Foundation [GBMF-2644]
  7. NSF
  8. Smithsonian Astrophysical Observatory
  9. EPSRC [EP/P01058X/1] Funding Source: UKRI

向作者/读者索取更多资源

Cellular automata are classical bits that interact and display diverse emergent behaviors; quantum cellular automata (QCA) can exhibit complexity by following 'Goldilocks rules' that balance activity and stasis. These rules generate robust dynamical features, network structure, and persistent entropy fluctuations.
Cellular automata are interacting classical bits that display diverse emergent behaviors, from fractals to random-number generators to Turing-complete computation. We discover that quantum cellular automata (QCA) can exhibit complexity in the sense of the complexity science that describes biology, sociology, and economics. QCA exhibit complexity when evolving under 'Goldilocks rules' that we define by balancing activity and stasis. Our Goldilocks rules generate robust dynamical features (entangled breathers), network structure and dynamics consistent with complexity, and persistent entropy fluctuations. Present-day experimental platforms-Rydberg arrays, trapped ions, and superconducting qubits-can implement our Goldilocks protocols, making testable the link between complexity science and quantum computation exposed by our QCA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据