4.7 Article

A dynamic multi-objective optimization procedure for water cooling of a photovoltaic module

出版社

ELSEVIER
DOI: 10.1016/j.seta.2021.101111

关键词

Photovoltaic (PV) technology; Solar energy; Multi-objective optimization; Temperature control; Water cooling

向作者/读者索取更多资源

Dynamic multi-objective optimization (DMOO) significantly improves the performance of a polycrystalline-based solar photovoltaic (PV) module by increasing annual energy production and reducing water consumption.
Dynamic multi-objective optimization (DMOO) is implemented on a water-based cooling system to enhance the performance of a 50 W polycrystalline-based solar photovoltaic (PV) module. The DMOO is conducted under the climatic conditions of Tehran, Iran, with the aim of maximizing the power output while minimizing the amount of cooling water consumed. The results of the DMOO are compared against those of a no-cooling condition (NCC) and a constant water flow (CWF) condition of 0.1 LPM. Compared with CWF, DMOO is found to produce a 64.73% increase in the annual energy production and a 41.98% decrease in water usage over an entire year. Furthermore, compared to NCC, DMOO is able to reduce the average and maximum temperatures of the PV module by 54.07% and 61.02%, respectively in a year; these figures are 16.63% and 17.37% better than those of CWF. Moreover, on an annual basis, DMOO is found to reduce the difference between the average and maximum PV temperatures by 79.79% and 54.53% relative to NCC and CWF, respectively. This study shows that the performance of a PV module can be improved significantly by applying DMOO to its water-based cooling system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据