4.7 Article

Optimal Placement and Sizing of Wind Turbine Generators and Superconducting Magnetic Energy Storages in a Distribution System

期刊

JOURNAL OF ENERGY STORAGE
卷 38, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2021.102497

关键词

Distribution system; Wind turbine generator; Superconducting magnetic energy storage; Equilibrium optimizer; Optimal weight factors

向作者/读者索取更多资源

This paper determines the optimal placement and sizing of WTGs and SMESs in a distribution system using a proposed multi-objective-function based optimization method. Results show that the combination of WTGs and SMESs can significantly improve the performance of the distribution system.
High penetration of intermittent wind-turbine generation (WTG) into electric distribution system along with large variations of load demand introduce many problems to the system such as high power losses, voltage sag, and low voltage stability. To mitigate such problems, the distribution system is supported by superconducting magnetic energy storages (SMESs). This paper is aimed at determining the optimal placement and sizing of WTGs and SMESs in a distribution system using a proposed multi-objective-function based optimization method. The method is a hybrid one being based on an efficient algorithm called Equilibrium Optimizer (EO) along with loss sensitivity factor (LSF). The weighted-sum multi-objective function (IMO) is formulated for simultaneous minimization of energy-loss and voltage-deviation as well as enhancement of voltage-stability as indices characterizing the distribution system performance. The weight factors are no longer assumed or left open to the preferences of the decision maker. They are computed while optimizing the indices of the IMO in order to determine the optimal placement and sizing of WTGs and SMESs. The proposed method for optimal placement and sizing of WTGs and SMESs is tested and validated on the standard IEEE 33-bus distribution system with time-varying voltage-dependent load models including residential, industrial, commercial, and mixed loads as well as variable wind-speed. The results obtained using EO algorithm are compared with those obtained by particle swarm optimization (PSO) and genetic algorithm (GA) to validate the effectiveness of EO. The numerical results and simulations imply that the combination of WTGs and SMESs can successfully achieve minimization of energy-loss and voltage-deviation as well as enhancement of voltage-stability, and thereby significantly improve the performance of distribution system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据