4.7 Article

A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples

期刊

ALEXANDRIA ENGINEERING JOURNAL
卷 61, 期 6, 页码 4209-4218

出版社

ELSEVIER
DOI: 10.1016/j.aej.2021.09.040

关键词

Andrographolide; Electrochemical sensor; Molecularly imprinted polymer; Zinc oxide

资金

  1. Universiti Sains Malaysia [1001]

向作者/读者索取更多资源

A novel electrochemical sensor based on a PGE modified with molecularly imprinted graphene oxide/zinc oxide nanocomposites was presented for sensitive detection of andrographolide. The modified PGE showed good linear response and repeatability for andrographolide detection under optimized conditions, demonstrating excellent selectivity in the presence of interfering substances. The proposed method was successfully applied to determine andrographolide in real water samples with comparable results to the established method.
This paper presents a novel electrochemical sensor based on a pencil graphite electrode (PGE) modified with molecularly imprinted graphene oxide/zinc oxide nanocomposites for a sensitive detection of andrographolide. This is the first report of the novel method of electroanalytical determination of andrographolide through a modified PGE. The modified PGE was successfully fabricated and characterized. Then, quantitative analyses were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The optimum conditions for this analysis were the supporting electrolyte containing 0.1 M KCl and 0.001 M K3Fe(CN)(6), citrate buffer of pH 4, modulation amplitude of 50 mV, and scan rate of 10 mV/s. Under optimized parameters, a good linear response was obtained for andrographolide detection by DPV with a range of 50-145 mu M and a detection limit of 42.6 mu M. The relative standard deviation (R.S.D.) of the three measurements is 1.47%, which shows the excellent repeatability of the proposed method, while reproducibility analysis produced a R.S.D. value of 4.46%. The proposed technique with optimum conditions exhibited good selectivity towards the detection of andrographolide in the presence of ascorbic acid, uric acid, and cyclodextrin. This method was successfully applied to determine andrographolide in real water samples, and the results are comparable with the established method. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据