4.6 Article

Isolation and Characterization of Euglena gracilis-Associated Bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, Capable of Promoting the Growth and Paramylon Production of E. gracilis under Mixotrophic Cultivation

期刊

MICROORGANISMS
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms9071496

关键词

Euglena gracilis; paramylon; associated bacteria; growth promotion; paramylon production promotion; co-culture; Emticicia sp; Enterobacter sp

资金

  1. Japan Society for the Promotion of Science [JPJSBP120208808]
  2. Ministry of Education, Culture, Sports, Science, and Technology of Japan [19K04663]
  3. Grants-in-Aid for Scientific Research [19K04663] Funding Source: KAKEN

向作者/读者索取更多资源

The study isolated bacteria capable of enhancing E. gracilis growth and paramylon production under mixotrophic conditions, providing a method for increasing the paramylon yield of E. gracilis.
Euglena gracilis produces paramylon, which is a feedstock for high-value functional foods and nutritional supplements. The enhancement of paramylon productivity is a critical challenge. Microalgae growth-promoting bacteria (MGPB) can improve microalgal productivity; however, the MGPB for E. gracilis remain unclear. This study isolated bacteria capable of enhancing E. gracilis growth and paramylon production under mixotrophic conditions. Enterobacter sp. CA3 and Emticicia sp. CN5 were isolated from E. gracilis grown with sewage-effluent bacteria under mixotrophic conditions at pH 4.5 or 7.5, respectively. In a 7-day E. gracilis mixotrophic culture with glucose, CA3 increased E. gracilis biomass and paramylon production 1.8-fold and 3.5-fold, respectively (at pH 4.5), or 1.9-fold and 3.5-fold, respectively (at pH 7.5). CN5 increased E. gracilis biomass and paramylon production 2.0-fold and 4.1-fold, respectively (at pH 7.5). However, the strains did not show such effects on E. gracilis under autotrophic conditions without glucose. The results suggest that CA3 and CN5 promoted both E. gracilis growth and paramylon production under mixotrophic conditions with glucose at pH 4.5 and 7.5 (CA3) or pH 7.5 (CN5). This study also provides an isolation method for E. gracilis MGPB that enables the construction of an effective E. gracilis-MGPB-association system for increasing the paramylon yield of E. gracilis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据