4.6 Article

CMIP5 downscaling and its uncertainty in China

期刊

GLOBAL AND PLANETARY CHANGE
卷 146, 期 -, 页码 30-37

出版社

ELSEVIER
DOI: 10.1016/j.gloplacha.2016.09.003

关键词

Spatial stationarity; non-stationarity; HASM-OLS; HASM-GB; Climate scenarios; Downscaling; Uncertainty

资金

  1. National Natural Science Foundation of China [91325204]
  2. National High-tech R&D Program of the Ministry of Science and Technology of the People's Republic of China [2013AA122003]
  3. National Basic Research Priorities Program of Ministry of Science and Technology of the People's Republic of China [2010CB950904]

向作者/读者索取更多资源

A comparison between the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and observations at 735 meteorological stations indicated that mean annual temperature (MAT) was underestimated about 1.8 degrees C while mean annual precipitation (MAP) was overestimated about 263 mm in general across the whole of China. A statistical analysis of China-CMIP5 data demonstrated that MAT exhibits spatial stationarity, while MAP exhibits spatial non-stationarity. MAT and MAP data from the China-CMIP5 dataset were downscaled by combining statistical approaches with a method for high accuracy surface modeling (HASM). A statistical transfer function (STF) of MAT was formulated using minimized residuals output by HASM with an ordinary least squares (OLS) linear equation that used latitude and elevation as independent variables, abbreviated as HASM-OLS. The STF of MAP under a BOX-COX transformation was derived as a combination of minimized residuals output by HASM with a geographically weight regression (GWR) using latitude, longitude, elevation and impact coefficient of aspect as independent variables, abbreviated as HASM-GB. Cross validation, using observational data from the 735 meteorological stations across China for the period 1976 to 2005, indicates that the largest uncertainty occurred on the Tibet plateau with mean absolute errors (MAEs) of MAT and MAP as high as 4.64 degrees C and 770.51 mm, respectively. The downscaling processes of HASM-OLS and HASM-GB generated MAEs of MAT and MAP that were 67.16% and 77.43% lower, respectively across the whole of China on average, and 88.48% and 97.09% lower for the Tibet plateau. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据