4.6 Article

Habitats Are More Important Than Seasons in Shaping Soil Bacterial Communities on the Qinghai-Tibetan Plateau

期刊

MICROORGANISMS
卷 9, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms9081595

关键词

Qinghai-Tibetan Plateau; permafrost habitats; bacterial communities; seasonal changes

资金

  1. National Key Research and Development Program of China [2017YFC0504802]

向作者/读者索取更多资源

Habitats rather than seasons have a greater influence on soil bacterial community structures; environmental factors play a significant role in shaping bacterial composition and structure variation; soil temperature is the most important factor in shaping bacterial diversities.
Both habitats and seasons can determine the dynamics of microbial communities, but the relative importance of different habitats and seasonal changes in shaping the soil bacterial community structures on a small spatial scale in permafrost areas remains controversial. In this study, we explored the relative effect of four typical alpine meadow habitats (swamp wetland, swamp meadow, meadow and mature meadow) versus seasons on soil bacterial communities based on samples from the Qinghai-Tibetan Plateau in four months (March, May, July and September). The results showed that habitats, rather than seasons explained more variation of soil bacterial composition and structure. Environmental cofactors explained the greatest proportion of bacterial variation observed and can help elucidate the driving force of seasonal changes and habitats on bacterial communities. Soil temperature played the most important role in shaping bacterial beta diversities, followed by soil total nitrogen and pH. A group of microbial biomarkers, used as indicators of different months, were identified using random forest modeling, and for which relative abundance was shaped by different environmental factors. Furthermore, seasonality in bacterial co-occurrence patterns was observed. The data showed that co-occurrence relationships changed over months. The inter-taxa connections in May and July were more pronounced than that in March and September. Bryobacter, a genus of subgroup_22 affiliated to Acidobacteria, and Pseudonocardia belonging to Actinobacteria were observed as the keystone taxa in different months in the network. These results demonstrate that the bacterial community was clustered according to the seasonal mechanism, whereas the co-occurrence relationships changed over months, which indicated complex bacterial dynamics in a permafrost grassland on the eastern edge of Qinghai-Tibetan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据