4.7 Article

Stereospecific Epoxidation of Limonene Catalyzed by Peroxygenase from Oat Seeds

期刊

ANTIOXIDANTS
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/antiox10091462

关键词

limonene; biocatalysis; peroxygenase; epoxidation; oat flour

向作者/读者索取更多资源

Limonene is utilized as a sustainable alternative to petroleum-based solvents and a chemical platform for the production of enantiomerically pure epoxides through biocatalytic reactions. The process is valuable for its operational simplicity, lack of toxic metal catalysts, and cost-effectiveness.
Limonene is one of the most abundant naturally occurring cyclic monoterpenes and has recently emerged as a sustainable alternative to petroleum-based solvents as well as a chemical platform for the production of value-added compounds. The biocatalytic epoxidation of both enantiomers of limonene was carried out in the presence of a peroxygenase-containing preparation from oat (Avena sativa) flour. Different reaction profiles were observed depending on the starting enantiomer of limonene, but in both cases the 1,2-monoepoxide was obtained as the main product with excellent diastereoselectivity. Trans-1,2-monoepoxide and cis-1,2-monoepoxide were isolated from the reaction of (R)-limonene and (S)-limonene, respectively, and the reactions were scaled-up to 0.17 M substrate concentration. The process is valuable for operational simplicity, lack of toxic metal catalysts, and cost-effectiveness of the enzymatic source. Pure stereoisomers of 1,2-monoepoxides of limonene constitute a useful starting material for biorenewable polymers, but can be also converted into other chiral derivatives by epoxide ring opening with nucleophiles. As a proof of concept, a tandem protocol for the preparation of enantiopure (1S,2S,4R)-1,2-diol from (R)-limonene and (1R,2R,4S)-1,2-diol from (S)-limonene was developed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据