4.7 Article

Oxidized Phospholipids and Neutrophil Elastase Coordinately Play Critical Roles in NET Formation

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2021.718586

关键词

neutrophil extra cellular traps; myeloperoxidase (MPO); neutrophil elastase (NE); oxidized phospholipid; neutrophil (PMN)

资金

  1. Japan Society for the Promotion of Science [19K08894]
  2. AMED-CREST, AMED [JP20gm1210002]
  3. Grants-in-Aid for Scientific Research [19K08894] Funding Source: KAKEN

向作者/读者索取更多资源

The peroxidation of phospholipids plays a critical role in NETosis and NET formation, mediated by the enzymatic activity of myeloperoxidase (MPO). Neutrophil elastase (NE) contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. These findings provide new insights into the molecular mechanisms of NETosis and NET formation.
Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation. However, details of intracellular signaling downstream of ROS production during NETosis and NET formation remains uncertain. Here, we demonstrated that the peroxidation of phospholipids plays a critical role in NETosis and NET formation induced by phorbol 12-myristate13-acetate (PMA) or immune complex in vitro and by lipopolysaccharide (LPS) in vivo. This phospholipid peroxidation is mediated by the enzymatic activity of MPO. On the other hand, NE, which was previously reported to be released from granules to cytosol by MPO during NET formation, is not required for either the peroxidation of phospholipids or the execution of NETosis, but contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. Analysis of isolated nuclei clearly demonstrated that oxidized phospholipids and NE differently yet synergistically execute chromatin decondensation and nuclear swelling, and the subsequent release of nuclear contents. These findings indicate the dual roles of MPO in NETosis and NET formation, and provide new insight into the molecular mechanism of these phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据