4.6 Article

Toward higher-performance bionic limbs for wider clinical use

期刊

NATURE BIOMEDICAL ENGINEERING
卷 7, 期 4, 页码 473-485

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41551-021-00732-x

关键词

-

向作者/读者索取更多资源

This Perspective discusses the development and clinical application of high-performance bionic limbs, emphasizing the use of different technologies, such as osseointegration, neural signal amplification, and muscle sensors, to create better performing bionic limbs.
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs. This Perspective argues that technologies for the neural interfacing of robotic devices with the body that have been clinically tested in humans should be leveraged toward the creation of a new generation of high-performance bionic limbs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据