4.6 Article

A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback

期刊

NATURE BIOMEDICAL ENGINEERING
卷 7, 期 4, 页码 589-598

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41551-021-00767-0

关键词

-

向作者/读者索取更多资源

A soft and lightweight neuroprosthetic hand that offers simultaneous myoelectric control and tactile feedback outperformed a conventional rigid neuroprosthetic hand in speed and dexterity. The soft neuroprosthetic hand has the potential to help individuals with limb loss regain control and touch sensation.
A soft and lightweight neuroprosthetic hand that offers simultaneous myoelectric control and tactile feedback outperformed a conventional rigid neuroprosthetic hand in speed and dexterity. Neuroprosthetic hands are typically heavy (over 400 g) and expensive (more than US$10,000), and lack the compliance and tactile feedback of human hands. Here, we report the design, fabrication and performance of a soft, low-cost and lightweight (292 g) neuroprosthetic hand that provides simultaneous myoelectric control and tactile feedback. The neuroprosthesis has six active degrees of freedom under pneumatic actuation, can be controlled through the input from four electromyography sensors that measure surface signals from residual forearm muscles, and integrates five elastomeric capacitive sensors on the fingertips to measure touch pressure so as to enable tactile feedback by eliciting electrical stimulation on the skin of the residual limb. In a set of standardized tests performed by two individuals with transradial amputations, we show that the soft neuroprosthetic hand outperforms a conventional rigid neuroprosthetic hand in speed and dexterity. We also show that one individual with a transradial amputation wearing the soft neuroprosthetic hand can regain primitive touch sensation and real-time closed-loop control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据