4.4 Article

Model abstraction for discrete-event systems by binary linear programming with applications to manufacturing systems

期刊

SCIENCE PROGRESS
卷 104, 期 3, 页码 -

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/00368504211030833

关键词

Discrete-event systems; deterministic finite automata; natural projection; quasi-congruence relation; model abstraction

资金

  1. China Scholarship Council [201606960044]

向作者/读者索取更多资源

The paper introduces a new method to solve the supremal quasi-congruence computation problem using binary linear programming, aiming to reduce computational complexity and improve efficiency. The approach tackles the optimal partitioning problem to achieve optimal state-to-coset allocation, aiming to find the coarsest quasi-congruence and use the least number of cosets.
Model abstraction for finite state automata is helpful for decreasing computational complexity and improving comprehensibility for the verification and control synthesis of discrete-event systems (DES). Supremal quasi-congruence equivalence is an effective method for reducing the state space of DES and its effective algorithms based on graph theory have been developed. In this paper, a new method is proposed to convert the supremal quasi-congruence computation into a binary linear programming problem which can be solved by many powerful integer linear programming and satisfiability (SAT) solvers. Partitioning states to cosets is considered as allocating states to an unknown number of cosets and the requirement of finding the coarsest quasi-congruence is equivalent to using the least number of cosets. The novelty of this paper is to solve the optimal partitioning problem as an optimal state-to-coset allocation problem. The task of finding the coarsest quasi-congruence is equivalent to the objective of finding the least number of cosets. Then the problem can be solved by optimization methods, which are respectively implemented by mixed integer linear programming (MILP) in MATLAB and binary linear programming (BLP) in CPLEX. To reduce the computation time, the translation process is first optimized by introducing fewer decision variables and simplifying constraints in the programming problem. Second, the translation process formulates a few techniques of converting logic constraints on finite automata into binary linear constraints. These techniques will be helpful for other researchers exploiting integer linear programming and SAT solvers for solving partitioning or grouping problems. Third, the computational efficiency and correctness of the proposed method are verified by two different solvers. The proposed model abstraction approach is applied to simplify the large-scale supervisor model of a manufacturing system with five automated guided vehicles. The proposed method is not only a new solution for the coarsest quasi-congruence computation, but also provides us a more intuitive understanding of the quasi-congruence relation in the supervisory control theory. A future research direction is to apply more computationally efficient solvers to compute the optimal state-to-coset allocation problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据