4.7 Article

Exogenous Salicylic Acid Improves Chilling Tolerance in Maize Seedlings by Improving Plant Growth and Physiological Characteristics

期刊

AGRONOMY-BASEL
卷 11, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy11071341

关键词

inbred line; plant growth; photosynthetic characteristics; reactive oxygen species (ROS) content; antioxidant enzyme

资金

  1. National Natural Science Foundation of China [31501251]
  2. National Key Research and Development Program of China [2018YFD0300103]
  3. Young Talents of Northeast Agricultural University [19QC02]
  4. Academic Elite of Northeast Agricultural University [20XG25]

向作者/读者索取更多资源

Salicylic acid improves chilling resistance in maize seedlings by enhancing physiological characteristics such as chlorophyll content, photosynthesis, and stomatal conductance, leading to increased plant growth and osmotic adjustment capacity.
Maize (Zea mays L.) is a chilling-sensitive plant. Chilling stress in the early seedling stage seriously limits the growth, development, productivity and geographic distribution of maize. Salicylic acid (SA) is a plant growth regulator involved in the defenses against abiotic and biotic stresses as well as in plant development. However, the physiological mechanisms underlying the effects of foliar applied SA on different maize inbred lines under chilling stress are unclear. Two inbred lines, cold-sensitive cv. C546 and cold-tolerant cv. B125, were used to study the effects of SA on the growth and physiology of maize seedlings. The results showed that the application of SA at 50 mg/L on the leaves of maize seedlings under 4 degrees C decreased the relative electrolyte conductivity (REC) and the malondialdehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O-2(-)) content due to increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activity; SA also improved photosynthesis in the seedlings through increased chlorophyll content, enhanced Pn and Gs, and decreased Ci. SA application also increased the proline content and the relative water content (RWC) in the maize seedlings, thereby improving their osmotic adjustment capacity. The increase rate caused by SA of plant height and dry weight in C546 were 10.5% and 5.4% higher than that in B125 under 4 degrees C. In conclusion, SA promotes maize seedling growth and physiological characteristics, thus enhancing chilling resistance and the effect of SA on the chilling resistance of cold-sensitive cv. was stronger than that on cold-tolerant cv. at the low temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据