4.7 Article

Protective and Curative Effects of Trichoderma asperelloides Ta41 on Tomato Root Rot Caused by Rhizoctonia solani Rs33

期刊

AGRONOMY-BASEL
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy11061162

关键词

Trichoderma asperelloides; Rhizoctonia solani; tomato; biological control; defense-related genes

资金

  1. Deanship of Scientific Research at King Saud University [RGP-1440-094]

向作者/读者索取更多资源

The Ta41 isolate exhibited high antagonistic activity against Rs33, promoting tomato growth, reducing disease index, and significantly increasing the expression levels of defense-related genes under protective and curative treatments.
Two molecularly identified tomato isolates, Trichoderma asperelloides Ta41 and Rhizoctonia solani Rs33, were characterized and antagonistically evaluated. The dual culture technique showed that Ta41 had a high antagonistic activity of 83.33%, while a light microscope bioassay demonstrated that the Ta41 isolate over-parasitized the pathogen completely. Under greenhouse conditions, the application of Ta41 was able to promote tomato plant growth and had a significant increase in plant height, root length, and shoot fresh, shoot dry, root fresh, and root dry weight. It also improved chlorophyll content and total phenol content significantly, both in protective and in curative treatments. The protective treatment assay exhibited the lowest disease index (16.00%), while the curative treatment showed a disease index of 33.33%. At 20 days post-inoculation, significant increases in the relative expression levels of four defense-related genes (PR-1, PR-2, PR-3, and CHS) were observed in all Ta41-treated plants when compared with the non-treated plants. Interestingly, the plants treated with Ta41 alone showed the highest expression, with relative transcriptional levels of CHS, PR-3, PR-1, and PR-2 that were, compared with the control, 3.91-, 3.13-, 2.94-, and 2.69-fold higher, respectively, and the protective treatment showed relative transcriptional levels that were 3.50-, 3.63-, 2.39-, and 2.27-fold higher, respectively. Consequently, the ability of Ta41 to promote tomato growth, suppress Rs33 growth, and induce systemic resistance supports the incorporation of Ta41 as a potential bioagent for controlling root rot disease and increasing the productivity of crops, including tomatoes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据