4.7 Article

Dry Period Heat Stress Impacts Mammary Protein Metabolism in the Subsequent Lactation

期刊

ANIMALS
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/ani11092676

关键词

hyperthermia; milk; late-gestation

资金

  1. University of Florida Institute of Food and Agricultural Sciences Climate Change
  2. University of Wisconsin Foundation [MSN1882]
  3. Florida's Agricultural, Natural Resource and Human Systems 2016 Seed Fund Grant

向作者/读者索取更多资源

Heat stress during the dry period reduces milk yield, protein content, and protein yield in subsequent lactation, impacting mammary metabolism.
Simple Summary Heat stress during the dry period of dairy cows reduces milk yield in the following lactation. Factors such as altered mammary metabolism could impact yields and alter milk composition, including milk protein. We sought to determine if exposure to dry period heat stress would influence mammary milk protein metabolism during the subsequent lactation. Objectives were to first determine the impact of dry period heat stress on milk protein yields and secondly characterize the amino acid and protein profiles in the mammary tissue, milk, and blood to elucidate potential carry-over impact of dry period heat stress on systems that participate directly in milk protein metabolism (i.e., mTOR). We found that heat stress during the dry period reduces milk yield, protein content, and protein yield in the subsequent lactation. The plasma amino acid profile and mammary amino acid transporters are altered in dry period heat-stressed cows, and mammary mTOR signaling proteins are differentially expressed as well. It appears that dry period heat stress impacts mammary metabolism with consequences on milk yield and protein content. The continuous production of high-quality and -quantity milk is vital as a sustainable source of protein in the face of rising global temperatures. Dry period heat stress impairs subsequent milk production, but its impact on milk protein content and yield is inconsistent. We hypothesize that dairy cow exposure to dry period heat stress will reduce milk protein synthesis in the next lactation, potentially through modified amino acid (AA) transport and compromised mTOR signaling in the mammary gland. Cows were enrolled into heat-stressed (dry-HT, n = 12) or cooled (dry-CL, n = 12) treatments for a 46-day dry period then cooled after calving. Milk yield and composition and dry matter intake were recorded, and milk, blood, and mammary tissue samples were collected at 14, 42, and 84 days in milk (DIM) to determine free AA concentrations, milk protein fractions, and mammary AA transporter and mTOR pathway gene and protein expression. Dry matter intake did not significantly differ between treatments pre- or postpartum. Compared with dry-CL cows, milk yield was decreased (32.3 vs. 37.7 +/- 1.6 kg/day) and milk protein yield and content were reduced in dry-HT cows by 0.18 kg/day and 0.1%. Further, dry-HT cows had higher plasma concentrations of glutamic acid, phenylalanine, and taurine. Gene expression of key AA transporters was upregulated at 14 and 42 DIM in dry-HT cows. Despite minor changes in mTOR pathway gene expression, the protein 4E-BP1 was upregulated in dry-HT cows at 42 DIM whereas Akt and p70 S6K1 were downregulated. These results indicate major mammary metabolic adaptations during lactation after prior exposure to dry period heat stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据