4.3 Article

Dihydrotestosterone Induces Chemo-Resistance of Triple-Negative Breast MDA-MB-231 Cancer Cells Towards Doxorubicin Independent of ABCG2 and miR-328-3p

期刊

CURRENT MOLECULAR PHARMACOLOGY
卷 14, 期 5, 页码 860-870

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1874467214666210531170355

关键词

Triple-negative breast cancer; androgen receptor; dihydrotestosterone; breast cancer resistant protein; miR-328-3p; ABCG2 Protein

资金

  1. Deanship of Scientific Research, University of Jordan [19/2019/355, 19/2017/4030]
  2. Scientific Research and Innovation Fund, Ministry of Higher Education and Research, Jordan [MPH/2/6/2014]

向作者/读者索取更多资源

Through experiments, it was found that DHT can regulate cell resistance to doxorubicin in TNBC cells, not by affecting the levels of miR-328-3p and ABCG2, but through another mechanism.
Background: Androgens potentially have an important role in the biology of breast cancer, particularly triple-negative breast cancer (TNBC). Androgen receptor (AR) may offer a novel therapeutic strategy, including the use of microRNA (miRNA) molecules. We have previously shown that AR agonist, dihydrotestosterone (DHT), increases the expression of miR-328-3p in the TNBC MDA-MB-231 cells. One target of the latter miRNA is ATP-binding cassette subfamily G member 2 (ABCG2), which modulates the chemo-response of cancer cells by pumping out xenobiotics. Objective: Using MDA-MB-231 cells as a model system for TNBC, we hypothesized that DHT would induce cell sensitivity towards doxorubicin via increasing levels of miR-328-3p and, consequently, reducing ABCG2 levels. Methods: Chemo-response of cells towards doxorubicin, tamoxifen, and mitoxantrone was evaluated using cell viability MTT assay. Cells were transfected with both miR-328-3p mimic or antisense molecules. Real-time PCR was utilized to assess RNA levels and immunoblotting was performed to investigate levels of ABCG2 protein. PCR arrays were used to assess changes in the expression of drug response regulatory genes. Results: Contrary to our hypothesis, treating MDA-MB-231 cells with DHT no effect towards tamoxifen or mitoxantrone, increased cell resistance towards doxorubicin was noted, concomitant with decreased expression of ABCG2. This under-expression of ABCG2 was also found in MCF-7 and MDA-MB-453 cells treated with DHT. Although miR-328-3p decreased ABCG2 mRNA and protein levels, the miRNA did not alter the chemo-response of cells towards doxorubicin and did not affect DHT-induced chemo-resistance. AR activation slightly decreased the expression of 5 genes, including insulin-like growth factor 1 receptor that may explain the mechanism of DHT-induced chemo-resistance of cells. Conclusion: DHT regulates chemo-response via a mechanism independent of ABCG2 and miR-328-3p.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据