4.3 Article

Laboratory Determination of Rock Fracture Shear Stiffness Using Seismic Wave Propagation and Digital Image Correlation

期刊

GEOTECHNICAL TESTING JOURNAL
卷 40, 期 1, 页码 92-106

出版社

AMER SOC TESTING MATERIALS
DOI: 10.1520/GTJ20160035

关键词

seismic wave propagation; digital image correlation; static shear stiffness; dynamic shear stiffness; rock fracture; rock discontinuity

向作者/读者索取更多资源

Seismic wave propagation and digital image correlation were used during direct shear experiments on Indiana limestone specimens to investigate the stiffness of rock discontinuities (fractures) approaching shear failure. An instrumented direct shear apparatus was used to apply shear stress to the discontinuity. Compressional and shear wave pulses were transmitted through and reflected from the discontinuity, whereas digital images of the specimen surface were acquired during the test. To measure the dynamic shear stiffness of the rock discontinuities, the displacement discontinuity theory was used and the stiffness was calculated based on the ratio of transmitted to reflected wave amplitudes. The static shear stiffness was calculated based on the ratio of an increment in the applied shear stress to the corresponding increment of relative shear displacement (slip) along the discontinuity. The dynamic shear stiffness measured by seismic wave propagation showed roughly five to ten times greater magnitude than the static values measured by digital image correlation technique. This observation is found to be in agreement with available studies indicating that the frequency-dependent fracture stiffness arises from probabilistic and spatial distributions of stiffness and that dynamic moduli are typically greater than the static values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据