4.6 Article

Multiscattering inversion for low-model wavenumbers

期刊

GEOPHYSICS
卷 81, 期 6, 页码 R417-R428

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2015-0650.1

关键词

-

资金

  1. KAUST

向作者/读者索取更多资源

A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single-or double-scattered wavefield computed from a predicted scatter field acting as secondary sources. We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (high-scattering-angle) components are directed to the velocity model. As our background velocity matures, the scattering-angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据