4.6 Article

Downregulation of miR-142a Contributes to the Enhanced Anti-Apoptotic Ability of Murine Chronic Myelogenous Leukemia Cells

期刊

FRONTIERS IN ONCOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2021.718731

关键词

chronic myelogenous leukemia; miRNA-mRNA network; apoptosis; miR-142a; Ciapin1

类别

资金

  1. National Natural Science Foundation of China [81900149]
  2. Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support [20152506]
  3. SamuelWaxman Cancer Research Foundation

向作者/读者索取更多资源

This study integratedly analyzed miRNA and gene expression alterations in murine CML LSKs, highlighting the essential role of the ERK-miR-142a-Ciapin1 axis in CML pathogenesis.
Background Leukemic stem cell (LSC) is thought to be responsible for chronic myelogenous leukemia (CML) initiation and relapse. However, the inherent regulation of LSCs remains largely obscure. Herein, we integratedly analyzed miRNA and gene expression alterations in bone marrow (BM) Lin(-)Sca1(+)c-Kit(+) cells (LSKs) of a tet-off inducible CML mouse model, Scl/tTA-BCR/ABL (BA). Methods Scl/tTA and TRE-BA transgenic mice were crossed in the presence of doxycycline to get double transgenic mice. Both miRNA and mRNA expression profiles were generated from BM LSKs at 0 and 3 weeks after doxycycline withdrawal. The target genes of differentially expressed miRNAs were predicted, followed by the miRNA-mRNA network construction. In vitro and in vivo experiments were further performed to elucidate their regulation and function in CML progression. Results As a result of the integrated analysis and experimental validation, an anti-apoptotic pathway emerged from the fog. miR-142a was identified to be downregulated by enhanced ERK-phosphorylation in BA-harboring cells, thereby relieving its repression on Ciapin1, an apoptosis inhibitor. Moreover, miR-142a overexpression could partially rescue the abnormal anti-apoptotic phenotype and attenuate CML progression. Conclusion Taken together, this study explored the miRNA-mRNA regulatory networks in murine CML LSKs and demonstrated that ERK-miR-142a-Ciapin1 axis played an essential role in CML pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据