4.7 Article

Microdevice for directional axodendritic connectivity between micro 3D neuronal cultures

期刊

MICROSYSTEMS & NANOENGINEERING
卷 7, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41378-021-00292-9

关键词

-

资金

  1. PA CURE Health Research Formula [4100068719]
  2. Lehigh University Accelerator Grant
  3. AFOSR [FA9550-19-1-0419]

向作者/读者索取更多资源

This study demonstrates a PDMS-based device that achieves directional connectivity between micro 3D cell cultures, which has the potential to serve as a building block for the reconstruction of more complex cortical circuits in vitro.
Neuronal cultures are widely used in neuroscience research. However, the randomness of circuits in conventional cultures prevents accurate in vitro modeling of cortical development and of the pathogenesis of neurological and psychiatric disorders. A basic feature of cortical circuits that is not captured in standard cultures of dissociated cortical cells is directional connectivity. In this work, a polydimethylsiloxane (PDMS)-based device that achieves directional connectivity between micro 3D cultures is demonstrated. The device consists of through-holes for micro three-dimensional (mu 3D) clusters of cortical cells connected by microtrenches for axon and dendrite guidance. The design of the trenches relies in part on the concept of axonal edge guidance, as well as on the novel concept of specific dendrite targeting. This replicates dominant excitatory connectivity in the cortex, enables the guidance of the axon after it forms a synapse in passing (an en passant synapse), and ensures that directional selectivity is preserved over the lifetime of the culture. The directionality of connections was verified morphologically and functionally. Connections were dependent on glutamatergic synapses. The design of this device has the potential to serve as a building block for the reconstruction of more complex cortical circuits in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据