4.6 Article

CXCR6-CXCL16 Axis Promotes Breast Cancer by Inducing Oncogenic Signaling

期刊

CANCERS
卷 13, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/cancers13143568

关键词

breast cancer; chemokine; chemokine receptor; ADAM10

类别

资金

  1. National Cancer Institute [CA169716, CA180212, CA118638, CA179701]

向作者/读者索取更多资源

Breast cancer (BrCa) is the second leading cause of cancer-related deaths in American women, and its incidence is increasing. This study highlights the importance of the chemokine axis CXCR6/CXCL16 in promoting BrCa and suggests it as a potential therapeutic target for advanced-stage BrCa.
Simple Summary Breast cancer (BrCa) is the second leading cause of cancer-related deaths in American women, and its incidence is on the rise. Insufficient understanding of the mechanisms leading to BrCa limits the effectiveness of the treatment. In this article, we show the importance of a chemokine axis-CXCR6/CXCL16 in supporting BrCa progression. We have delineated BrCa-promoting mechanisms induced by this chemokine axis at the molecular level. This work projects the therapeutic significance of CXCR6/CXCL16 signaling for the treatment of BrCa. Precise mechanisms underlying breast cancer (BrCa) metastasis are undefined, which becomes a challenge for effective treatments. Chemokine signaling instigates the trafficking of cancer cells in addition to leukocytes. This study aimed to ascertain the clinical and biological significance of the CXCR6/CXCL16 signaling axis in the pathobiology of BrCa. Our data show a higher expression of CXCR6 in BrCa cell lines and tissues. Stage-III BrCa tissues express significantly higher CXCR6 compared to stage-II tissues. The ligand, CXCL16, could remain tethered to the cell surface, and, after proteolytic shedding of the ectodomain, the N-terminal fragment is released, converting it to its oncogenic, soluble form. Like CXCR6, N-terminal CXCL16 and ADAM-10 were significantly higher in stage-III than stage-II, but no significant difference was observed in the C-terminal fragment of CXCL16. Further, stimulation of the CXCR6/CXCL16 axis activated Src, FAK, ERK1/2, and PI3K signaling pathways, as per antibody microarray analysis, which also underlie CXCL16-induced F-actin polymerization. The CXCR6/CXCL16 axis induces cytoskeleton rearrangement facilitating migration and invasion and supports BrCa cell survival by activating the PI3K/Akt pathway. This study highlights the significance of the CXCR6/CXCL16 axis and ADAM10 as potential therapeutic targets for advanced-stage BrCa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据