4.8 Article

Submicrometer perovskite plasmonic lasers at room temperature

期刊

SCIENCE ADVANCES
卷 7, 期 35, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abf3362

关键词

-

资金

  1. NIH [DP1EB024242]
  2. Massachusetts General Hospital Research Scholar Award
  3. Samsung Scholarship
  4. Wellman-Bullock Fellowship
  5. NSF [1541959]
  6. U.S. Army Research Office through the Institute for Soldier Nanotechnologies at MIT [W911NF-18-2-0048]
  7. Air Force Office of Scientific Research [FA9550-20-10115]

向作者/读者索取更多资源

This study demonstrates submicrometer-sized plasmonic lasers using CsPbBr3 crystals on gold substrates, highlighting the importance of enhanced optical gain, spontaneous emission factor, and high group index for efficient plasmonic lasing.
Plasmonic lasers attracted interest for their ability to generate coherent light in mode volume smaller than the diffraction limit of photonic lasers. While nanoscale devices in one or two dimensions were demonstrated, it has been difficult to achieve plasmonic lasing with submicrometer cavities in all three dimensions. Here, we demonstrate submicrometer-sized, plasmonic lasers using cesium-lead-bromide perovskite (CsPbBr3) crystals, as small as 0.58 mu m by 0.56 mu m by 0.32 mu m (cuboid) and 0.79 mu m by 0.66 mu m by 0.18 mu m (plate), on polymer-coated gold substrates at room temperature. Our experimental and simulation data obtained from more than 100 plasmonic and photonic devices showed that enhanced optical gain by the Purcell effect, large spontaneous emission factor, and high group index are key elements to efficient plasmonic lasing. The results shed light on the three-dimensional miniaturization of plasmonic lasers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据