4.8 Article

Cluster-based network modeling-From snapshots to complex dynamical systems

期刊

SCIENCE ADVANCES
卷 7, 期 25, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abf5006

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [SE 2504/2-1]

向作者/读者索取更多资源

This study introduces a universal method for data-driven modeling of complex nonlinear dynamics, bridging machine learning, network science, and statistical physics. The proposed cluster-based network modeling (CNM) describes short- and long-term behavior and is fully automatable. This approach complements network connectivity science and offers fast-track avenues for understanding, estimating, predicting, and controlling complex systems in all scientific fields.
We propose a universal method for data-driven modeling of complex nonlinear dynamics from time-resolved snapshot data without prior knowledge. Complex nonlinear dynamics govern many fields of science and engineering. Data-driven dynamic modeling often assumes a low-dimensional subspace or manifold for the state. We liberate ourselves from this assumption by proposing cluster-based network modeling (CNM) bridging machine learning, network science, and statistical physics. CNM describes short- and long-term behavior and is fully automatable, as it does not rely on application-specific knowledge. CNM is demonstrated for the Lorenz attractor, ECG heartbeat signals, Kolmogorov flow, and a high-dimensional actuated turbulent boundary layer. Even the notoriously difficult modeling benchmark of rare events in the Kolmogorov flow is solved. This automatable universal data-driven representation of complex nonlinear dynamics complements and expands network connectivity science and promises new fast-track avenues to understand, estimate, predict, and control complex systems in all scientific fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据