4.8 Article

Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities

期刊

CHEM
卷 7, 期 9, 页码 2385-2394

出版社

CELL PRESS
DOI: 10.1016/j.chempr.2021.06.005

关键词

-

资金

  1. Swiss National Science Foundation (SNF) [200021-175947]
  2. Swiss National Science Foundation (SNF) [200021_175947] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Membranes are crucial in gas separation for their low cost, energy efficiency, and durability. Researchers have developed a new concept to enhance selectivity of graphene-based membranes by depositing microislands of Pd and Ni on the support layer, enabling efficient separation of specific gases like H2 and CO2. This approach may offer a promising alternative for economical gas separation by selectively targeting individual gases in a membrane setting through adsorptive separation at room temperature.
Membranes play an important role in gas separation on account of their low cost, energy efficiency, and durability. Gas-separation membranes, however, are subject to permeability-selectivity trade-off, i.e., atomically thin 2D materials such as porous graphene can provide ultrahigh permeances in the range of similar to 10(5)-10(7) GPU but suffer from low gas selectivity. Here, we show a new concept to enhance the selectivity of graphene-based membranes by employing adsorptive separation for binary gas mixtures. The deposition of microislands'' of Pd and Ni on the porous double-layer graphene support allowed us to selectively target H-2 in He/H-2 and CO2 in H-2/CO2 mixtures, respectively, thus enabling efficient separation of He and also leading to the highest H-2/CO2 separation factor of 26 within the similar to 10(5) GPU permeance range. Moreover, the selective targeting of individual gases in amembrane setting through adsorptive separation at room temperature can be a promising alternative for economical gas separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据