4.6 Article

Dye-Loaded Polymersome-Based Lateral Flow Assay: Rational Design of a COVID-19 Testing Platform by Repurposing SARS-CoV-2 Antibody Cocktail and Antigens Obtained from Positive Human Samples

期刊

ACS SENSORS
卷 6, 期 8, 页码 2988-2997

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.1c00854

关键词

COVID-19; in vitro diagnostics; point-of-care (POC) platform; lateral flow assay; dye-loaded polymersome; sample repurposing

资金

  1. EGE University, Research Foundation [TOA2020-21862]
  2. Republic of Turkey, Ministry of Development [2010K120810/2020K12150700, 2016K121190]

向作者/读者索取更多资源

The study presents a rational design of a colorimetric lateral flow immunoassay (LFA) based on repurposing human samples to produce COVID-19-specific antigens and antibodies for naked-eye detection. The diagnostic tests showed 93% sensitivity for antigen tests and 92.2% sensitivity for antibody tests, indicating high potential for widespread applications.
The global pandemic of COVID-19 continues to be an important threat, especially with the fast transmission rate observed after the discovery of novel mutations. In this perspective, prompt diagnosis requires massive economical and human resources to mitigate the disease. The current study proposes a rational design of a colorimetric lateral flow immunoassay (LFA) based on the repurposing of human samples to produce COVID-19-specific antigens and antibodies in combination with a novel dye-loaded polymersome for naked-eye detection. A group of 121 human samples (61 serums and 60 nasal swabs) were obtained and analyzed by RT-PCR and ELISA. Pooled samples were used to purify antibodies using affinity chromatography, while antigens were purified via magnetic nanoparticles-based affinity. The purified proteins were confirmed for their specificity to COVID-19 via commercial LFA, ELISA, and electrochemical tests in addition to sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Polymersomes were prepared using methoxy polyethylene glycol-b-polycaprolactone (mPEG-b-PCL) diblock copolymers and loaded with a Coomassie Blue dye. The polymersomes were then functionalized with the purified antibodies and applied for the preparation of two types of LFA (antigen test and antibody test). Overall, the proposed diagnostic tests demonstrated 93 and 92.2% sensitivity for antigen and antibody tests, respectively. The repeatability (92-94%) and reproducibility (96-98%) of the tests highlight the potential of the proposed LFA. The LFA test was also analyzed for stability, and after 4 weeks, 91-97% correct diagnosis was observed. The current LFA platform is a valuable assay that has great economical and analytical potential for widespread applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据