4.6 Article

Integrated Capture and Electroreduction of Flue Gas CO2 to Formate Using Amine Functionalized SnOx Nanoparticles

期刊

ACS ENERGY LETTERS
卷 6, 期 9, 页码 3352-3358

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.1c01553

关键词

-

资金

  1. National Key R&D Program of China [2016YFB0600901]

向作者/读者索取更多资源

By grafting alkanol-amines on a tin oxide surface, the study successfully integrated CO2 capture and electrochemical conversion of flue gas, achieving high Faradaic efficiency for formate production. Surface amino groups not only enrich CO2 and inhibit O2 reduction, but also accelerate CO2 reduction by promoting the formation of key intermediates.
Flue gas from fossil fuel combustion contributes significantly to CO2 emissions. Due to the low CO2 concentration and the existence of reactive O-2 in the flue gas, direct flue gas CO2 electrochemical conversion is a challenging task. Here we integrated both CO2 capture and electrochemical conversion into CO2 enriching catalysts by grafting alkanol-amines on a tin oxide surface, which can electrochemically reduce simulated flue gas (SFG, 15% CO2, 8% O-2, 77% N-2) to formate. Maximum formate Faradaic efficiency of 84.2% has been reached by diethanolamine modified tin oxide (DEA-SnOx/C) at -0.75 V vs RHE with partial current density of 6.7 mA.cm(-2) in 0.5 M KHCO3 under simulated flue gas atmosphere. Surface amino groups not only enrich CO2 locally but also inhibit O-2 reduction, and in situ infrared (in situ IR) spectroscopy confirmed that amino groups accelerate CO2 reduction by promoting the formation of key intermediates (OCHO-*).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据